An architecture for encoding sentence meaning in left mid-superior temporal cortex.

نویسندگان

  • Steven M Frankland
  • Joshua D Greene
چکیده

Human brains flexibly combine the meanings of words to compose structured thoughts. For example, by combining the meanings of "bite," "dog," and "man," we can think about a dog biting a man, or a man biting a dog. Here, in two functional magnetic resonance imaging (fMRI) experiments using multivoxel pattern analysis (MVPA), we identify a region of left mid-superior temporal cortex (lmSTC) that flexibly encodes "who did what to whom" in visually presented sentences. We find that lmSTC represents the current values of abstract semantic variables ("Who did it?" and "To whom was it done?") in distinct subregions. Experiment 1 first identifies a broad region of lmSTC whose activity patterns (i) facilitate decoding of structure-dependent sentence meaning ("Who did what to whom?") and (ii) predict affect-related amygdala responses that depend on this information (e.g., "the baby kicked the grandfather" vs. "the grandfather kicked the baby"). Experiment 2 then identifies distinct, but neighboring, subregions of lmSTC whose activity patterns carry information about the identity of the current "agent" ("Who did it?") and the current "patient" ("To whom was it done?"). These neighboring subregions lie along the upper bank of the superior temporal sulcus and the lateral bank of the superior temporal gyrus, respectively. At a high level, these regions may function like topographically defined data registers, encoding the fluctuating values of abstract semantic variables. This functional architecture, which in key respects resembles that of a classical computer, may play a critical role in enabling humans to flexibly generate complex thoughts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dissociating Effects of Scrambling and Topicalization within the Left Frontal and Temporal Language Areas: An fMRI Study in Kaqchikel Maya

Some natural languages grammatically allow different types of changing word orders, such as object scrambling and topicalization. Scrambling and topicalization are more related to syntax and semantics/phonology, respectively. Here we hypothesized that scrambling should activate the left frontal regions, while topicalization would affect the bilateral temporal regions. To examine such distinct e...

متن کامل

The Neuronal Correlates of Indeterminate Sentence Comprehension: An fMRI Study

Sentences such as The author started the book are indeterminate because they do not make explicit what the subject (the author) started doing with the object (the book). In principle, indeterminate sentences allow for an infinite number of interpretations. One theory, however, assumes that these sentences are resolved by semanticcoercion, a linguistic process that forces the noun book to be int...

متن کامل

Topography of Sylvian Fissure and Central Sulcus as Neurosurgical Landmarks: an Anatomical Study Using Cadaveric Specimens in Iran

Background and Aim: In the present study, the cerebral surface landmarks in human fresh autopsy specimens were investigated. Methods and Materials/Patients: Totally, 37 fresh adult autopsy human brain specimens from the Rasht Forensic Medicine Center were enrolled. Four specimens were excluded because of some traumatic injuries to cerebral cortex. Demographic information of all cases was obt...

متن کامل

Idiom comprehension: a prefrontal task?

We investigated the neural correlates of idiomatic sentence processing using event-related functional magnetic resonance imaging. Twenty-two healthy subjects were presented with 62 literal sentences and 62 idiomatic sentences, each followed by a picture and were required to judge whether the sentence matched the picture or not. A common network of cortical activity was engaged by both condition...

متن کامل

Right anterior superior temporal activation predicts auditory sentence comprehension following aphasic stroke.

Previous studies have suggested that recovery of speech comprehension after left hemisphere infarction may depend on a mechanism in the right hemisphere. However, the role that distinct right hemisphere regions play in speech comprehension following left hemisphere stroke has not been established. Here, we used functional magnetic resonance imaging (fMRI) to investigate narrative speech activat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 112 37  شماره 

صفحات  -

تاریخ انتشار 2015